

Low-Level Design Report

CS 492: Senior Design Project

Toproffer

Doğacan Kaynak

Burak Kırımlı

Mert Çerçiler

Servan Tanaman

Yiğit Kutay Gülben

Supervisor: Halil Altay Güvenir

Jury Members: Hamdi Dibeklioğlu, Varol Akman

Innovation Expert: Burcu Coşkun Şengül

1. Introduction 2
1.1 Object design trade-offs 2

1.1.2 Complexity vs Usability 3

2. Packages 5
2.1 Dart Packages 5

2.1.1 Model 6
2.1.2 View 7
2.1.3 Presenter 8

2.2. Server Packages 8
2.2.1 Machine Learning Package 8

3. Class Interfaces 9

4. Glossary 12

5. References 13

1

1. Introduction

The state of the Turkish economy has deteriorated for some years. Between

these years, inflation has increased and Turkish Lira has been losing its value

against foreign currencies, especially the US dollar and Euro.

Restaurants have innovative tactics to inspire potential customers to visit their

restaurants. For a specific time period, they bring their low-priced or under-sold

products into the promotions.

There is no way to announce their ads to a social platform except for potential

customers on social media. So Toproffer came as an idea to help people save their

time and save their economy with less effort compared to looking for restaurants on

the streets blindly.

Moreover, Related to the low-level design report, the detailed and improved

version of the high-level design report is going to be the low-level design study. The

scope and validity of the design principles will be explained in detail in this article.

The solutions to the design problems will be considered as well as describing the

engineering standards. The study also includes trade-offs, descriptions of

implementations, bundles and configurations of classes.

1.1 Object design trade-offs

In software development, the people who are the team members have to

determine how the functionality in the app will be implemented. This can change

everything in the product because some of the features or functions of the product or

the portion of the other features need to be sacrificed. The team members rely on

tradeoffs so as not to lose the application's spirit. Trade-offs that we considered will

be discussed in the following sections.

2

1.1.1 Performance vs Portability

Toproffer aims at getting the attention of the millions. Portability therefore in

the application is important. The chosen team members are Flutter that is

cross-platform for Android and IOS. Flutter will create an application for both android

and ios at once. Nevertheless, although we try to minimize the performance

deficiency, if we compare that Toproffer was only for one platform, there might be a

bit of a performance deficiency.

1.1.2 Complexity vs Usability

Toproffer is an application for socialization for people who want to know what

the latest campaigns are about multiple places around him or a particular area.

Therefore, as students, kids, parents, couples, friends, etc. There may be lots of

different users. These different user groups will make easy use of the program.

While team members concentrate on usability, in the meantime, complexity is getting

higher. Machine learning algorithms and the use of data collected from users make

the context a bit complicated and complex while the user interface is simple and

easy to use.

1.2 Interface documentation guidelines

In this report all the class interfaces are described as ‘ClassName’ format.

The variable and method names of the classes are specified. Some important pages

of our system are shown as classes with their methods which are mostly consist of

connections between the front-end and back-end part of our system since we

produce a mobile application. Also, some important database tables and its

attributes are shown as classes in order to show the models of our system. Template

of the description of interfaces is shown below.

3

Class Name: Name of the class

Class Description: Brief description of class

Attributes: Attributes of the class. The format of the attributes are <attribute
name>: <data type>

Methods: Methods of the class. The format of the methods are <Return Type>
<method name>(<Parameters (if any)>) async (if the method is asynchronous
function)

1.3 Engineering standards (e.g., UML and IEEE)
Engineering standards are a type of documents that specifies characteristics and

technical details that must be satisfied by the end product, systems, including

processes that the standards cover. The application must be stable and that is a very

important objective for the sake of this project. We are using different software

development environments such as Flutter[3], Firebase[4], and so on.

Our project Toproffer designed to serve an excessive amount of users at the same

time with real-time feedback from the system. Potentially many users should be able

to use the system with real-time feedback without and glitch. Thus we chose the

Cloud Firestore | Firebase Database and since we used Flutter, we followed the Dart

Language Specification standards[5]. Besides the ethical concerns that we followed,

for the technical part of the application, we drew Toproffer subsystem decomposition

structure according to UML[6] standardizations. By this means, we ensure that

classes and objects of Toproffer are created based on the Object-Oriented

Programming[7] specifications.

1.4 Definitions, acronyms, and abbreviations
● US: United States

● UML: Unified Modeling Language

4

● IEEE: Institute of Electrical and Electronics Engineers

● Flutter: Flutter is Google’s UI toolkit to build mobile, web and desktop

applications from a single codebase.[3]

● Firebase: Firebase is a mobile and web application development platform

developed by Firebase, Inc. [8]

● Dart: Dart is a client-optimized language for fast apps on any platform. [9]

● Object-Oriented Programming: Object-oriented programming (OOP) is a

programming paradigm based on the concept of "objects", which can contain

data, in the form of fields (often known as attributes or properties), and code,

in the form of procedures (often known as methods). [7]

● Cloud Firestore: Cloud Firestore is a NoSQL document database that lets

store, sync, and query data for your mobile and web apps. [10]

● ads: advertisements

2. Packages

2.1 Dart Packages
Flutter framework uses MVP(Model View Presenter) design pattern. Dart packages
contains necessary model, view and presenter files for the Android and IOS
application. Due to Flutter Framework, all widgets are set into a default stereotype.
This means in both devices it will be compatible.

Presenter classes are either Fragment or Activity classes and they extend the
corresponding base class from Dart SDK. Each presenter class is interacting with a
view.

Model classes represent the data structures that we have in the server.

The packages don’t include detailed methods. The methods of them explained on the
3rd subsection. In Flutter framework classes of view, presenter and modelAlso there is
a mapping of design pattern on the below for better understanding.

5

https://en.wikipedia.org/wiki/Mobile_phone_application
https://en.wikipedia.org/wiki/Web_application
https://en.wikipedia.org/wiki/Programming_paradigm
https://en.wikipedia.org/wiki/Object_(computer_science)
https://en.wikipedia.org/wiki/Data
https://en.wikipedia.org/wiki/Field_(computer_science)
https://en.wikipedia.org/wiki/Method_(computer_science)

2.1.1 Model

Model_manager: It is the parent of user and campaign objects.

User: It is parent of customer and Restaurant_owner. It is responsible for modelling

customers and restaurant owners in application.

Campaign: It is parent of Permanent_campaign and Momentarily_campaign. It is

responsible for modelling campaigns in application.

Momentarily_campaign: It is responsible for modelling short-term campaigns.

Permanent_campaign: It is responsible for modelling long-term campaigns.

6

Restaurant_owner: It is responsible for modelling restaurant owners.

Customer: It is responsible for modelling customers.

2.1.2 View

View_manager: It is the parent of Login, Campaign_manager, Profile_manager,

Notification_manager and Map_manager.

Login: It is responsible for setting up the before accessing the home page of

application.

Campaign_manager: It is responsible for the view of momentarily and permanent

campaigns.

Profile_manager: It is responsible for the view of users’ and restaurants’ profile

page.

Notification_manager: It is responsible for the view of ordering notifications.

Map_manager: It is responsible for the view of map which you can see campaigns.

7

2.1.3 Presenter

Database_manager: It is responsible for database access and querying.

Auth: It is responsible for user related tasks in database. Login/Signup and profile

updates are done from this class.

Notification_manager: It is responsible for delivering notifications according to user.

Campaign_manager: It is responsible from delivering campaigns to users and

recomending campaigns to restaurant owners.

Firebase_manager: It is responsible from building bridge between server and user

User_manager: It is responsible from storing the user’s information.

2.2. Server Packages

Server packages maintain the communication between Android-Client and
IOS-Client, Database and Machine Learning packages, they are not allowed to
interact with each other without using the server.

pubspec.yaml

2.2.1 Machine Learning Package

This package is stored in the server-side and executed upon a request from restaurant

8

owner. It performs recommendations on campaigns via machine learning algorithm to
restaurant owner.

campaign_generator.py

3. Class Interfaces

Class Name: LoginPage

Class Name: This is the class of our login page that either customers or restaurant
owners can login to our system via their emails and password combinations,
facebook accounts or gmail accounts.

Attributes:
instance: Auth
username: String
password: String
auth: FirebaseAuth
isLogin: boolean
gso: GoogleSignInOptions
credential: FacebookAuthProvider

Methods:
Future<void> signInWithEmailAndPassword(email, password) async
Future<void>firebaseAuthWithGoogle(GoogleSignInAccount acct) async
Future<void> sendEmailVerification() async
Future<String> signInWithFacebok(String accessToken) async
void submitData()
Widget build(BuildContext context)

Class Name: CampaignCreator

Class Description: This is the class where restaurant owners create the
campaigns for their restaurants.

Attributes:
title: String
content1: Menu
content2: Menu or null
content3: Menu or null
newPrice: double
duration: var

9

isPermanent: boolean

Methods:
void submitData()
boolean checkPrice(Menu content1, Menu content2, Menu content3, double
newPrice)
Widget build(BuildContext context)

Class Name: CampaignConfirmation

Class Description: This is the class where customers verify the code of the
campaigns in order to apply the campaigns.

Attributes:
code: String
isTrue: boolean
campaignCounter: int

Methods:
void submitData()
boolean checkCode()
String getCode()
Widget build(BuildContext context)

Class Name: RestaurantSettings

Class Description: This is the class where restaurant owners can edit their detail
informations about the restaurants.

Attributes:
restaurantName: String
description: String
profilePhoto: Image
restaurantPhotos: Image
email :String
password: String
address: String

Methods:
void submitData()
Widget build(BuildContext context)

Below tables are represents the database tables to indicate models of our system.

10

Class Name: Customer

Class Description: Customers are users that are able to benefit from the
campaigns.

Attributes:
user_id: int
username: String
password: String
email: String
age: int
following_restaurants: Restaurant
used_campaigns: Campaign
interests: String
profile_photo: Image

Class Name: Restaurant

Class Description: Restaurants are users that are able to create campaigns to
attract customers.

Attributes:
user_id: int
username: String
password: String
email: String
followers: Customer
address: String
active_campaigns: Campaign
old_campaigns: Campaign
tax_number: int
profile_photo: Image
restaurant_photos: Image

Class Name: Campaign

Class Description: Campaigns are the main theme of our system that are
created by the restaurants to discount desired products and announce to
customers.

Attributes:
campaign_id: int
user_id: int
campaign_title: String
campaign_content: String
campaign_type: String

11

new_price: int
address: String
campaign_application_counter: int
campaign_codes: Code
campaign_duration: int

Class Name: Code

Class Description: This class generates codes to apply campaigns.

Attributes:
campaign_id: int
user_id: int
code_id: String
time: Time

4. Glossary

Inflation: A decline in the value of money

Algorithm: A precise step-by-step plan for a computational procedure that begins

with an input value and yields an output value in a finite number of steps

US: United States

customer: One who purchases or receives a product or service

ads: Advertisements

portability: Portability is a characteristic attributed to a computer program if it can be

used in an operating systems other than the one in which it was created without

requiring major rework.

usability: Usability is the ease of use and learnability of a human-made object such

as a tool or device

complexity: Complexity is a term that includes many properties of a piece of

software, all of which affect internal interactions.

campaign: Promotional strategies are those aimed at bringing in more revenue by

running deals and discounts, and using ads in restaurants to reach out to customers.

feedback: to convey by means of specialized communications channel

UML: Unified Modeling Language

12

IEEE: Institute of Electrical and Electronics Engineers

Flutter: Flutter is Google’s UI toolkit to build mobile, web and desktop applications

from a single codebase.[3]

Firebase: Firebase is a mobile and web application development platform developed

by Firebase, Inc. [8]

Dart: Dart is a client-optimized language for fast apps on any platform. [9]

Object-Oriented Programming: Object-oriented programming (OOP) is a

programming paradigm based on the concept of "objects", which can contain data, in

the form of fields (often known as attributes or properties), and code, in the form of

procedures (often known as methods). [7]

Cloud Firestore: Cloud Firestore is a NoSQL document database that lets store,

sync, and query data for your mobile and web apps. [10]

5. References

[3] “Flutter - Home Page”. https://flutter.dev/ . [Accessed: February 13, 2020]

[4] “Firebase - Home Page”. https://firebase.google.com/ . [Accessed: February 14,

2020]

[5] “Dart Language Specification”. https://dart.dev/guides/language/spec . [Accessed:

February 14, 2020]

[6] “UML – Wikipedia”. https://en.wikipedia.org/wiki/Unified_Modeling_Language .

[Accessed: February 14, 2020]

[7] “OOP – Wikipedia”. https://en.wikipedia.org/wiki/Object-oriented_programming .

[Accessed: February 15, 2020]

[8] “Firebase – Wikipedia”. https://en.wikipedia.org/wiki/Firebase . [Accessed: February 15,

2020]

[9] “Dart - Home Page”. https://dart.dev/ . [Accessed: February 13, 2020]

[10] “Cloud Firestore”. https://firebase.google.com/products/firestore . [Accessed: February

14, 2020]

13

https://en.wikipedia.org/wiki/Mobile_phone_application
https://en.wikipedia.org/wiki/Web_application
https://en.wikipedia.org/wiki/Programming_paradigm
https://en.wikipedia.org/wiki/Object_(computer_science)
https://en.wikipedia.org/wiki/Data
https://en.wikipedia.org/wiki/Field_(computer_science)
https://en.wikipedia.org/wiki/Method_(computer_science)
https://flutter.dev/
https://firebase.google.com/
https://dart.dev/guides/language/spec
https://en.wikipedia.org/wiki/Object-oriented_programming
https://en.wikipedia.org/wiki/Firebase
https://dart.dev/
https://firebase.google.com/products/firestore

